手机浏览器扫描二维码访问
“mosFeT模型可以将em与所有器件参数和偏置电压相关联,描述了它在解释和指导热电子缩放中的用途,你是如何想到通过电路仿真的预测性来对mosFeT进行互连建模?”
跨越数千公里的电话线,两头不仅仅是地理上的距离,更是时间上的距离。
周新给胡正明的解答,是胡正明自己在2ooo年的论文,表在2ooo年的Ieee集成电路会议论文集上,在胡正明过九百篇论文里被引用次数排名第八。
虽然排名不是很高,但是却起到了承上启下的作用。
胡正明最大的贡献是,将半导体的2d结构,研优化出了3d结构,也就是Fi。
从196o年到2o1o年左右,基本的平面(2d)mosFeT结构一直保持不变,直到进一步增加晶体管密度和降低器件功耗变得不可能。
胡正明在加州大学伯克利分校的实验室早在1995年就看到了这一点。
Fi作为第一个3dmosFeT,将扁平而宽的晶体管结构变为高而窄的晶体管结构。好处是在更小的占地面积内获得更好的性能,就像在拥挤的城市中多层建筑相对于单层建筑的优势一样。
Fi也就是所谓的薄体(thin-body)mosFeT,这一概念继续指导新设备的开。
它源于这样一种认识,即电流不会通过硅表面几纳米内的晶体管泄漏,因为那里的表面电势受到栅极电压的良好控制。
Fi牢记这种薄体概念。该器件的主体是垂直的硅鳍片,被氧化物绝缘体和栅极金属覆盖,在强栅极控制范围之外没有留下任何硅。Fi将漏电流降低了几个数量级,并降低了晶体管工作电压。它还指出了进一步改进的路径:进一步降低厚度。
而电流不会通过硅表面几纳米内的晶体管泄漏,因为那里的表面电势受到栅极电压的良好控制,这一概念,正是mosFeT进行互连建模在实验室进行复现后现的。
周新不可能告诉胡正明,这是你自己现的。
不过由于周新对于胡正明最重要的论文,都做过精读,对于当时是如何思考,有自己的分析。
这些分析和二十年后的老胡交流过程中,也获得了对方的认可。
甚至我带过的很多博士生在毕业的时候,在这方面的能力都不如你。”
胡正明没有给周新设置太高的门槛,博士生入学考试的难度。
当然这个难度对于华国的大二学生来说,换成除了周新,任何一个人来都做不出来。
这不是水平的差距,而是全方位的差距。
不管是教材、教师水平、学习的深度等等,大二和博士生入学考试之间隔着很厚的壁垒。
更别说还要通过全英文作答。
“如果我没能通过考试呢?”周新在电话里反问道。
胡正明笑了笑:“只要你能够证明邮件是你本人写的。
那么我也会帮你搞定转校和奖学金的事情。
只是说你需要来伯克利把本科没有上完的课程补完。”
作为半导体界教父级的人物,在伯克利呆了二十多年时间,想要帮学生搞定奖学金,用轻而易举来形容毫不夸张。
胡正明很欣赏周新,不仅仅是因为那封邮件,也是因为对方在沟通中表现出来的坦诚,以及这口流利的英语。
甚至在一些语气词里都和他一样。
周新在阿美利肯期间,主要沟通对象之一就是胡正明,口语主要就是在阿美利肯那几年突飞猛进的。
口语表达上二人当然会有相似之处。
周新在电话那头笑了笑:“好。”
“mosFeT模型可以将em与所有器件参数和偏置电压相关联,描述了它在解释和指导热电子缩放中的用途,你是如何想到通过电路仿真的预测性来对mosFeT进行互连建模?”
跨越数千公里的电话线,两头不仅仅是地理上的距离,更是时间上的距离。
周新给胡正明的解答,是胡正明自己在2ooo年的论文,表在2ooo年的Ieee集成电路会议论文集上,在胡正明过九百篇论文里被引用次数排名第八。
虽然排名不是很高,但是却起到了承上启下的作用。
胡正明最大的贡献是,将半导体的2d结构,研优化出了3d结构,也就是Fi。
从196o年到2o1o年左右,基本的平面(2d)mosFeT结构一直保持不变,直到进一步增加晶体管密度和降低器件功耗变得不可能。
胡正明在加州大学伯克利分校的实验室早在1995年就看到了这一点。
Fi作为第一个3dmosFeT,将扁平而宽的晶体管结构变为高而窄的晶体管结构。好处是在更小的占地面积内获得更好的性能,就像在拥挤的城市中多层建筑相对于单层建筑的优势一样。
Fi也就是所谓的薄体(thin-body)mosFeT,这一概念继续指导新设备的开。
它源于这样一种认识,即电流不会通过硅表面几纳米内的晶体管泄漏,因为那里的表面电势受到栅极电压的良好控制。
Fi牢记这种薄体概念。该器件的主体是垂直的硅鳍片,被氧化物绝缘体和栅极金属覆盖,在强栅极控制范围之外没有留下任何硅。Fi将漏电流降低了几个数量级,并降低了晶体管工作电压。它还指出了进一步改进的路径:进一步降低厚度。
而电流不会通过硅表面几纳米内的晶体管泄漏,因为那里的表面电势受到栅极电压的良好控制,这一概念,正是mosFeT进行互连建模在实验室进行复现后现的。
周新不可能告诉胡正明,这是你自己现的。
不过由于周新对于胡正明最重要的论文,都做过精读,对于当时是如何思考,有自己的分析。
这些分析和二十年后的老胡交流过程中,也获得了对方的认可。
甚至我带过的很多博士生在毕业的时候,在这方面的能力都不如你。”
穆言身为招子女,命运只有两个,主家生男则嫁,生女则要为媵。她忍辱嫁了没有血缘关系的弟弟,却被背叛,被下堂,被抢走孩子,她是真的恨透了这个世界。本以为一切结束,谁知竟重生与她十四岁的年华,面对毫无血缘的‘弟弟’,她是要嫁,还是不嫁?...
美艳嚣张不可一世的叶家天才叶一凝重生了。一夜之间,嚣张大小姐变成了大怂包,举城哗然。你们知道吗,以前叶一凝看到夜魔王都敢挥鞭子,现在见到他绕道就跑。这算什么,上次为了退婚,她打残了寂王,前些天居然跪在乾坤宫外求圣上下旨要继续履行婚约你这个消息落后了,现在是叶一凝一不高兴,寂王帮着挥鞭子了,前儿才打残了太子妃,今日又鞭笞了前皇后是夜,一个拥有绝世神颜的男人出现叶一凝床前,小东西,折腾了那么久,还不是要嫁给我!...
简介关于她能行么故乡被毁,小被俘。就连最强大的帝国也战败了。真的能靠她一人之力挽回败局吗?一定要将故乡从敌人手中夺回来!游戏同人,已得到原作者同意。...
一不小心成老大,傻里傻气闯天涯。你不要逼我,乖乖男也是有底线的。这是一个校草逆袭的故事。我就是爱你,咋的啦,我是校花我做主!这是一个花样美女泛滥的季节。生命如花,家国是花,且看主人公如何护花,齐家,爱国,平天下...
从1981年算起,穿越到英国已经十年了。开始以为能利用重生优势先知先觉,三十岁以前实现财务自由。结果十一岁生日当天,脑海里叮的一声万界杂货铺已开启,请店主接受第一个任务。看来,一个全新的未来开始了...
简介关于开局从时王开始获得四大英雄之力新一号新哥斯拉新初号机新奥特曼。开局获得了四大英雄合体之力的杨开,在他的杨中看到了什么…时王世界中斯沃鲁兹现了从异世界来的杨开,并赐予了他时劫者的能力,希望他能够帮助自己获得封魔时王的力量。不过杨开却并不这么想,他看着自己手中的新四合一表盘露出了诡异的微笑假面骑士的末日要到了。四合一广告世界(完结)时王世界(持续中)驰骑未来剧场版(完结)艾克赛德吃豆人剧场版(完结)捷德(完结)极狐(完结)...